
Programmability, Performance and

Productivity
The Emergence of FPGA Code Accelerators

Walid A Najjar
University of California Riverside

Jacquard Computing Inc.

SPL 2011 - CORDOBA, ARGENTINA

Credits

Over the past six years
 Dr. Jason Villarreal (Jacquard Computing)
 Adrian Park (Jacquard Computing)
 Roby Atadero (Jacquard Computing)
 Robert Halstead (UCR)
 Dr. Zhi Guo (Huawei)
 Dr. A. Betul Buyukkurt (Google)
 John Cortes (Huawei)
 Dr. Dinesh Suresh (AMD)

FPGA CODE ACCELERATION

opportunities & challenges

Opportunities: High Throughput

 Multiple studies report
- wireline throughput on FPGA code
- one to four orders of magnitude speed-up

against software
 V/s GPUs
- One to two orders speed-up

why FPGAs as code accelerators?

The efficiency of
hardware

The programmability of
software

Speedup
 1 to 4

orders of
magnitude

efficiency

Limitations of stored program model
- software is in memory
- software controls datapath
- datapath controls data

On FPGA

software is the datapath

efficiency & parallelism

Highly repetitive computation on streamable data
- efficiency advantage of spatial computing: ~ 10x*

- parallelism advantage of FPGAs: ~ 100x
- pipelining advantage: ~ 10x
- clock rate disadvantage of FPGAs: ~ 0.20x

~ 2,000x

❖10% would get you a paper in a top computer architecture conference!

*Guo et al. in 2004 Symp. On FPGA, February 2004

why FPGAs as code accelerators?

HDL programming:
Unfamiliar behavioral

languages
Tedious low level circuit
design, Timing sensitive

Complex tool-chain:
synthesis, place & route

Many
man-months/
application

not

programmability!

√

Main Challenge

HLL to circuit
Imperative HLL Circuit

language algorithmic, procedural
time insensitive

behavioral,
timed

sequencing temporal & sequential concurrent

memory central, virtual distributed,
registers

limit memory size circuit area

Challenge
Algorithm

11

Stored Program Circuit

minimize number of steps
per unit data

minimize area used per
unit data

maximize unit data per
clock cycle

minimize clock cycle time

Needed: complete application restructuring using spatially
concurrent algorithms

Challenge
Data size

Stored Program
- fixed word/datapath size: 8, 16, 32, 64, 128, 256 ...

Circuit
- smaller area: more parallelism & shorter clock cycle ==>

higher throughput

- customizable data size: to fit dynamic range of data, precision

Challenge
Data access

Stored Program FPGA

cache memory X

virtual memory X

memory mapped I/O X

standard memory
interface X

Why are GPUs in HPC?

chip
design

owner?

owner?
reference

board
design

owner?

nVidia
manages the
whole stack

ROCCC 2.0

ROOTS & VISION

What is ROCCC?

Riverside Optimizing Compiler for Configurable Circuits
Designed for the generation of FPGA code accelerators
from C
- Not an EDA tool!
- Focus is on loop nests and streaming data

• extensive loop and array analysis for parallelism
Designed to:
- achieve same clock speed as hand-written HDL
- keep the user in full control:

• algorithm and design space exploration
• only what is well understood is automated

Origins Of ROCCC 1.0

SA-C (Single Assignment C): Colorado State
- Language + compiler project

• demonstrated efficient hardware based upon single assignment
property

StreamsC: LANL
- Addition of streaming mechanisms to C, explicit parallelism
- Now ImpulseC

ROCCC 1.0
- Purely top down approach
- Limits the design space that can be explored

Why ROCCC 2.0?

Hardware Specification Problem

App.
Algorithm

C
Program

Hardware
Implementations

?

my favorite solution

Why ROCCC 2.0?

Abstractions

ABSTRACTIONS!
• secret ingredient in the computing revolution of the past 60 years
• none such, yet, for FPGAs

Compilers rely on abstractions of the hardware
eco-system

• virtual memory, memory mapped I/O etc

ROCCC 2.0: two data source abstractions
- streams & random access memory
- inferred by compiler

Interface Abstractions
Memory

Ethernet

SATA

ROCCC
Code

BRAM
FPGA

memory interface

stream interface

platform specific
interface core

Why ROCCC 2.0?

Exploration
example:

two loops nested accessing two arrays

Unroll loop 1
or loop 2?

Partial or full
unroll?

Access arrays in
chunks or as
streams?

One or two
memory banks? Merge

arrays?

Multiple clock
domains?

Fuse the
loops? Design

space
explosion

ROCCC 2.0 Vision

Give user better control over outcome
Use C to build modular computing
elements

- modular design
- bottom-up construction
- composable and reusable modules

Abstract away platform specifics
- from compiler code generation: interface to memories

Support efficient design space exploration
- user driven, platform aware

ROCCC 2.0

IMPLEMENTATION

ROCCC 2.0

Enable higher level programming of FPGAs
- Transform a subset of C
- Focus on hardware-appropriate algorithms as opposed to generic C

Enable reusability, composability, and portability
- Modular approach to hardware construction
- Separate platform interface from compiler
- Tuning of applications to particular platform accomplished through

optimizations - GUI

Generate high throughput circuits
- Extensive optimizations

Free, open source toolset

compiler
generated

Decoupled Execution
Memory

Input Smart Buffer

pipelined datapath

Memory

Output Buffer

DMA
 Engine

DMA
 Engine

loop nest =>
pipelined datapth

designed to reuse
on chip data

FIFO buffer

Every cycle:
• Input smart buffer

pushes data to
datapath

• Output buffer collects
data

Memory can be on or
off chip or board

Modular Bottom-up Design

Modules and Systems
Modules:
- Self contained hardware computational blocks, expressed in C
- Bottom-up composition of modules
- Standard database (SQLite3) contains all information on

modules either in C, VHDL, or netlists

Systems
- Process streams of data in critical loops
- Can use modules
- Many user controllable optimizations

Module Code
// Interface
typedef struct
{
 int realOne_in ;
 int imagOne_in ;
 int realTwo_in ;
 int imaTwo_in ;
 int realOmega_in ;
 int imagOmega_in ;

 int A0_out ;
 int A1_out ;
 int A2_out ;
 int A3_out ;
} FFT_t ;

// Implementation
FFT_t FFT(FFT_t f)
{
 int tmp1 ;
 int tmp2 ;

 tmp1 = f.realOmega_in * f.realTwo_in ;
 tmp2 = f.imagOmega_in * f.imagTwo_in ;

 f.A0_out = f.realOne_in + tmp1 - tmp2 ;
 // The other outputs computations go here...
 return f ;
}

Interface
A struct that specifies
inputs and outputs

Implementation
A function that describes
computation inside the
black box
All outputs must be
assigned

input registers

output registers

internal registers

Module Instantiation

All Modules accessible as
functions
- “roccc-library.h”
- Called as any other C

function
Standard database
maintains all module
information
GUI supports automatic
insertion of module
instantiations

#include “roccc-library.h”

typedef struct
{
 int input0_in ;
 // Other inputs

 int tmp0_out ;
 // Other outputs
} FFTOneStage_t ;

FFTOneStage_t FFTOneStage(FFTOneStage_t t)
{
 FFT(t.input0_in,
 t.omega0_in,
 t.input16_in,
 t.omega1_in,
 t.input17_in,
 t.input1_in,
 t.temp0_out,
 t.temp1_out,
 t.temp2_out,
 t.temp3_out) ;

 // Others ...

 return t ;
}

module instantiation

System Code

#include “roccc-library.h”

void firSystem()
{
 int A[100] ;
 int B[100] ;

 int i ;
 int endValue ;
 int myTmp ;

 for(i = 0 ; i < endValue ; ++i)
 {
 // Data reuse is detected in
 // loops by the compiler
 FIR(A[i], A[i+1], A[i+2],
 A[i+3], A[i+4], myTmp) ;
 B[i] = myTmp ;
 }
}

actual value passed to
hardware at runtime

module instantiation can be
duplicated if loop is unrolled

identified as input & output streams

ROCCC Transformations

Standard
- CFG, DFG, and UD/DU
- Constant propagation/

folding
- Copy propagation
- Dead and unreachable

code elimination
- Scalar renaming
- Common subexpression

elimination

Loop
Unrolling
Fusing
Interchange
Peeling
Tiling
Unswitching
Invariant code motion

Array
Scalar replacement
Array renaming
RAW and WAW
elimination
Feedback elimination
Systolic array
generation
Sequential loop
pipelined unrolling
Temporal CSE

specific to hardware

Hardware Optimizations
Redundancy Specification
Pipelining and retiming
- Ability to specify weights for basic operations to guide the number of

pipeline stages

Smart Buffer Generation
- Keep memory accesses that will be reused to minimize off chip requests

Systolic array generation
- Wavefront algorithms are coded as nested for loops that iterate over a

two-dimensional array
- Specific set of optimizations to transform into a systolic array

Temporal common subexpression elimination
- Remove common code across loop iterations
- Extends to the removal of modules across loop iterations and addition of

feedback variables

Platform Independent
Interfacing

ROCCC Generates Generic Hooks
- Memories - address generator
- Streams - FIFOs

Each interface configurable by the user on a
stream-by-stream basis
- Number of outgoing memory requests
- Number of reads/writes per clock cycle

Optimized for maximum throughput
- Can support reading values every clock cycle or as fast

as can be fed

ROCCC 2.0 Modules
A module, in a module, in a … you get the idea

optimizations
transformations

C
module

VHDL
module

VHDL
module

VHDL
moduleROCCC

core
module

core
module

core
module

database specs of every module, area, timing, etc

3 different
transformations

options

Importing Modules

C
module

VHDL
module

core
module

ROCCC

C code
module or system

synthesis tool

place & route tool

VHDL

netlist

exposed to ROCCC

exposed to synthesis tool

preserved physical
characteristics

ROCCC 2.0 Features

Support for modular circuit design in C
- Reusable modules, in C, VHDL or cores
- Bottom-up design and top-down designs supported
- External IP cores integrated in ROCCC designs
- Partial compilation and partial synthesis with reuse
- Inlining and black box instantiation supported

Subset of C with no additional keywords
- ROCCC-code compiled and run with a software compiler

Support for variable bit width
- User control over precision of arithmetic operations

Floating point operations
- half (16-bit), single (32-bit) or double precision (64-bit)

ROCCC 2.0 Features

Automatic VHDL testbench code generation
Platform independent code generation
- allows fast re-targeting

User control over all transformations, optimizations
- Automate only what is fully understood, by us and the user!
- High-level transformations: loops and arrays
- Low-level optimizations: DFG and circuit levels
- Fine-grained control over low level optimizations

• pipelining depth, fanout tree generation
• parallelization of input and output streams

PERFORMANCE?

dynamic time warping

a data mining example

Dynamic Time Warping
Data mining using subsequence similarity search on time
series
Relies on dynamic programming on two strings: signal and
query

E. Keogh and C.A. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge and Information Systems, 7(3):358{386, 2005.

Dynamic Time Warping

C

Q

C

Q

Warping path w

Figure 1 (left-top) Two time series sequences which are similar but out of
phase. (right) To compute the dynamic time warping distance and to align
the sequences, we construct a warping matrix and find a warping path,
represented by solid squares.

The time complexity to compute the D(C,Q) is O(m2),
and the space complexity is also O(m2). If we only need the
value of the distance (i.e. d(m,m)) we can delete the trace of
the warping path, and thus, the space complexity can be
reduced to O(m) by storing only two columns of the matrix.

A. Definition of the Problem
We are now in a position to define the subsequence

search problem:

Given a time series T = t1,t2 n and a query Q =
q1,q2 m , find the subsequence Cs,m of T such that
D(s,m, s n-m+1, is minimum.

Given the above definition, we could devise a brute force
algorithm shown in Table 1, which takes O(nm2) time and
O(nm) space. For completeness, we also show the
pseudocode for computing the DTW distance in Table 2.

TABLE 1: SUBSEQUENCE SEARCH ALGORITHM

Procedure !"#$%&"%'(%!%)*(+,-./011
 -2131456%1$%*5%$1781'1975'4$1
 /21/"%*:1456%1$%*5%$178161975'4$1
1 ;<=7*6)>5;%,/01
2 !"#$$1?1@1%"1'<6A@1
3 1 ;<=7*6)>5;%,B$.601
4 1 B769"4%1!,"#$%$&01
5 1 C9D)4%165'56"61581'%(%$$)*:1

TABLE 2: DTW ALGORITHM

Procedure E,B./011
 B2131456%1$%*5%$1781'1975'4$.1B,F0?1 1
 /2131456%1$%*5%$178161975'4$.1/,F0?1 1
1 $1?1F1
2 !"#151?1F1%"1611
3 1 D,5.$01?1GB,@0</,50G1
4 $1?1$ @1HH1I7*179%*)457'1
5 !"#1J1?1K1%"1'11
6 1 !"#151?1F1%"161
7 1 11D,5.$01?1GB,J0</,50G1A1

111165',D,5<@.$0.D,5.$ @0.D,5<@.$ @001
8 1 $1?1$ @'
9 #&%'#(1D,'.$ @01

We have chosen the simplest possible problem definition
with one query, one time series and the same subsequence
length (m). There are more general subsequence search
problems where many queries [29] and time series are
involved, or where rotation/phase invariance is required
under DTW [34][26]. However, all such problems can
benefit directly from a speedup of the simple definition.

B. Why Current Software Solutions Are Not the Answer
As we hinted at above, the several apparent software

solutions to the task at hand contain a serious error. We can
best demonstrate this with a simple experiment.

Suppose we task a DTW subsequence search with the
simple task of detecting the heartbeats of an individual, using
one of that same individual s heartbeats. It is difficult to
imagine a simpler problem.

We begin by downloading a long ECG sequence from a
61-year-old female and manually extracting a typical beat as
our query [39]. We also manually extract some additional
adjacent beats and compare them to our query, finding them
to be an average distance of about 20.0, so we set our beat
detector at a conservative threshold of 30.0. Figure 2 shows
the beats detected in the first 1,800 datapoints, as we can see,
the majority of the beats are missed. How could this be?

-5

-3

-1

1

3

0 100-5

-3

-1

1

3 Query

Distance to the query

0 500 1000 1500
0

40
80

120
Threshold = 30

Figure 2: A query heartbeat (left) is scanned across an ECG trace. (top-
right) Only three of the twelve beats are detected. Plotting the distance
from the query to the relevant subsequence (bottom) reveals that slight
differences in a subsequence s mean value (offset) completely dominate the
DTW distance calculation, dwarfing any contribution from the similarity of
the shape.

Note that while the local mean of the ECG trace starts at
about zero, which is also the approximate mean of the query,
the trace slowly rises to have a local mean of about 1.0, then
descends below zero (allowing the detection of a single beat
at about 1,500 as the mean crosses zero).

The problem is that the SPRING algorithm [27] does not
(and, more critically cannot) normalize the offset or
amplitude of the subsequences of the longer time series. It is
therefore implicitly assuming that the query will happen to
have the same offset and amplitude as the matching
subsequence. However, in virtually every domain that
assumption is unwarranted. For example, virtually all ECGs
wander up and down as in our example, the effect is known
as a wandering baseline [18]. Similar problems are observed
in motion capture [16], astronomy, entomology, industrial
process telemetry, EEGs, etc.

It is important to recognize that there is no simple fix for
this problem. The SPRING [27] algorithm achieves its
speedup by exploiting the redundancy of calculations in a
sliding DTW matrix, but if each subsequence is z-
normalized, as it must be to obtain meaningful results, then
there will be no redundant calculations to exploit. For brevity

Detect a pattern across a time series
Normalization of data is extremely important

DTW - Software Solution

C
an

di
da

te
 S

eq
ue

nc
e

Normalize

DTW - Hardware Architecture
mainly in three ways. First, it maximizes the throughput by
exploiting loop and instruction level parallelism. Second, it
reuses the data, and third, it generates a pipelined datapath to
minimize the number of clock cycles [29].

Our FPGA design consists of two major blocks:
Normalizer and Warper, to normalize the input data and run
the actual DTW matrix calculations, respectively (Figure 6).
Input data streamed into the system are first given to a First-
In-First-Out (FIFO) buffer. The size and input ratio of this
FIFO can be adjusted according to the FPGA interconnection
mechanism. However, the output of the FIFO generates one
sample (8 bits) every clock cycle. Next, the output of the
FIFO is fed into the Normalizer module. Initially,
Normalizer waits until the first window is received. Every
following normalization operation reuses m-1 operands of
the previous operation, where m is the query length. After the
first output is produced, a new output is generated every
clock cycle. This output is given to another FIFO, which acts
as the intermediate memory component between the
Normalizer and the Warper.

Input
PINs

Input Buffer

m Datapoints
Normalizer

Internal Buffer

m Datapoints

Removing Buffer

1 Datapoint

Warper

1 Datapoint

Figure 6: FPGA Block Diagram. Thick lines are for m-point wide
connections. Thin lines are for one-point wide connections. Buffers are
simple FIFOs.

Internally, a trivial Normalizer module stores m-partial
sliding windows. In every clock cycle, it updates statistics
for all of the partial windows and outputs the window for
which the normalization is complete. Thus, it needs quadratic
O(m2) space in the FPGA and does not scale with larger
query lengths. In order to support larger query lengths, we
implemented an online Normalizer, which does not
remember intermediate states. It computes the mean () and
standard deviation () online and normalizes exactly one
window in every clock cycle. Thus, it needs linear O(m)
space in the FPGA. Although the trivial Normalizer has
shown better performance in speed due to less overhead, it
does not make any difference in the overall system
performance. The reason for this is that the Warper module
is the real performance bottle-neck as described later.

The Online Normalizer consists of three sub-units, as
shown in Figure 7. The first unit calculates the sum and sum
of squares of all the inputs in a sliding window fashion, by
adding the new value while subtracting the oldest value to be

until the first window is completely received through the

and the sum for the second window is obtained at the output.
This output is also given to the Normalize Divider sub-unit,
where the mean and the standard deviation of the latest
window are obtained. The input stream is provided to the
third unit through a buffer. The size of this buffer depends on
the delay of the first two modules. The third module must

wait until the corresponding mean and standard deviation
values are available for a given window. This delay is
provided by the Datapoint Buffer, which is automatically
added by ROCCC. The unit then runs the actual
normalization function. The generated normalized data is
provided to the systolic array (warper) through a buffer, as
shown in Figure 6.

Datapoint

To Remove

!

!

Window Length

Normalize

Adder

Normalize

Divider

m Datapoints

m Normalized
Datapoints

Online
Normalizer

Datapoint Buffer

Output to Internal
Buffer

x

2
x

Figure 7: Online Normalization Unit. The sum and sum of squares are
obtained in a sliding window approach, by adding the new input and
subtracting the oldest value. The input datapoints are delayed through the
Datapoint Buffer, to make sure that the correct mean and standard
deviation are used.

The Warper module is implemented as a systolic array
[3]. A systolic array consists of data processing units
connected in a matrix fashion. These data processing units
(i.e. cells) share the information with their neighbors
immediately after processing. Using ROCCC -in
systolic array generator, we simply obtain the hardware
description of the Warper module. Structurally, the Warper
module is the same for any window size, except for the size
of the systolic array. This size can be adjusted in the ROCCC
code by tuning a parameter. A Warper module generates one
DTW distance between the normalized sliding window and
the query time series in every m clock cycle where m is the
window size/query length. Since the normalization unit is m
times faster than the Warper unit, we place multiple Warper
units to operate on separate normalized windows generated
by the normalization unit. Ideally, if we had unlimited FPGA
area, we could place m Warper modules to get the maximum
processing speed of one DTW distance in every clock cycle.
When multiple Warper modules are in place, the Internal
Buffer output is fed into them in a round robin fashion.

VI. EVALUATION
In this section, we show the performances for the DTW

subsequence search problem in different hardware settings.
We use the following platforms:

Software: Intel Xeon E5540 CPU at 2.53 GHz
SSE : Intel i7- 920 CPU at 2.66 GHz
GPU: NVIDIA Tesla C1060 with 240 cores
FPG A : Xilinx Virtex 5 LX-330

The SSE (Streaming Single Instruction Multiple Data
(SIMD) Extensions) is an instruction set extension to
x86-architecture. It makes use of 128-bit SSE registers and
can merge four 32-bit data to operate concurrently. The
software implementation proposed in Table 1 can be
parallelized by making use of data independencies. However,

mainly in three ways. First, it maximizes the throughput by
exploiting loop and instruction level parallelism. Second, it
reuses the data, and third, it generates a pipelined datapath to
minimize the number of clock cycles [29].

Our FPGA design consists of two major blocks:
Normalizer and Warper, to normalize the input data and run
the actual DTW matrix calculations, respectively (Figure 6).
Input data streamed into the system are first given to a First-
In-First-Out (FIFO) buffer. The size and input ratio of this
FIFO can be adjusted according to the FPGA interconnection
mechanism. However, the output of the FIFO generates one
sample (8 bits) every clock cycle. Next, the output of the
FIFO is fed into the Normalizer module. Initially,
Normalizer waits until the first window is received. Every
following normalization operation reuses m-1 operands of
the previous operation, where m is the query length. After the
first output is produced, a new output is generated every
clock cycle. This output is given to another FIFO, which acts
as the intermediate memory component between the
Normalizer and the Warper.

Input
PINs

Input Buffer

m Datapoints
Normalizer

Internal Buffer

m Datapoints

Removing Buffer

1 Datapoint

Warper

1 Datapoint

Figure 6: FPGA Block Diagram. Thick lines are for m-point wide
connections. Thin lines are for one-point wide connections. Buffers are
simple FIFOs.

Internally, a trivial Normalizer module stores m-partial
sliding windows. In every clock cycle, it updates statistics
for all of the partial windows and outputs the window for
which the normalization is complete. Thus, it needs quadratic
O(m2) space in the FPGA and does not scale with larger
query lengths. In order to support larger query lengths, we
implemented an online Normalizer, which does not
remember intermediate states. It computes the mean () and
standard deviation () online and normalizes exactly one
window in every clock cycle. Thus, it needs linear O(m)
space in the FPGA. Although the trivial Normalizer has
shown better performance in speed due to less overhead, it
does not make any difference in the overall system
performance. The reason for this is that the Warper module
is the real performance bottle-neck as described later.

The Online Normalizer consists of three sub-units, as
shown in Figure 7. The first unit calculates the sum and sum
of squares of all the inputs in a sliding window fashion, by
adding the new value while subtracting the oldest value to be

until the first window is completely received through the

and the sum for the second window is obtained at the output.
This output is also given to the Normalize Divider sub-unit,
where the mean and the standard deviation of the latest
window are obtained. The input stream is provided to the
third unit through a buffer. The size of this buffer depends on
the delay of the first two modules. The third module must

wait until the corresponding mean and standard deviation
values are available for a given window. This delay is
provided by the Datapoint Buffer, which is automatically
added by ROCCC. The unit then runs the actual
normalization function. The generated normalized data is
provided to the systolic array (warper) through a buffer, as
shown in Figure 6.

Datapoint

To Remove

!

!

Window Length

Normalize

Adder

Normalize

Divider

m Datapoints

m Normalized
Datapoints

Online
Normalizer

Datapoint Buffer

Output to Internal
Buffer

x

2
x

Figure 7: Online Normalization Unit. The sum and sum of squares are
obtained in a sliding window approach, by adding the new input and
subtracting the oldest value. The input datapoints are delayed through the
Datapoint Buffer, to make sure that the correct mean and standard
deviation are used.

The Warper module is implemented as a systolic array
[3]. A systolic array consists of data processing units
connected in a matrix fashion. These data processing units
(i.e. cells) share the information with their neighbors
immediately after processing. Using ROCCC -in
systolic array generator, we simply obtain the hardware
description of the Warper module. Structurally, the Warper
module is the same for any window size, except for the size
of the systolic array. This size can be adjusted in the ROCCC
code by tuning a parameter. A Warper module generates one
DTW distance between the normalized sliding window and
the query time series in every m clock cycle where m is the
window size/query length. Since the normalization unit is m
times faster than the Warper unit, we place multiple Warper
units to operate on separate normalized windows generated
by the normalization unit. Ideally, if we had unlimited FPGA
area, we could place m Warper modules to get the maximum
processing speed of one DTW distance in every clock cycle.
When multiple Warper modules are in place, the Internal
Buffer output is fed into them in a round robin fashion.

VI. EVALUATION
In this section, we show the performances for the DTW

subsequence search problem in different hardware settings.
We use the following platforms:

Software: Intel Xeon E5540 CPU at 2.53 GHz
SSE : Intel i7- 920 CPU at 2.66 GHz
GPU: NVIDIA Tesla C1060 with 240 cores
FPG A : Xilinx Virtex 5 LX-330

The SSE (Streaming Single Instruction Multiple Data
(SIMD) Extensions) is an instruction set extension to
x86-architecture. It makes use of 128-bit SSE registers and
can merge four 32-bit data to operate concurrently. The
software implementation proposed in Table 1 can be
parallelized by making use of data independencies. However,

DTW - Performance

Evaluation
Platforms:
- Software: Intel

Pentium i7 2.66
GHz, 6 GB RAM

- FPGA: Xilinx
Virtex-5 LX-330

- GPU: NVIDIA Tesla
T10

1.00

10.00

100.00

1000.00

10000.00

100000.00

20 40 80 160

T
im

e
(i

n
 L

O
G

 S
ca

le
)

Input Length (in thousands)

Software
SSE
GPU
FPGA

D. Sart, A. Mueen, W. Najjar, V. Niennattrakul, and E. Keogh. Accelerating Dynamic Time Warping Subsequence Search with GPUs and FPGAs, in
IEEE Int. Conf. on Data Mining, Sydney, Australia, Dec. 2010.

Details

Clock rate
- Normalization Module runs at 174.6 MHz.
- Warping Matrix runs at 240 MHz.

Area
- Normalization Module requires 13% of FPGA Area
- Warping Matrix requires 7% of FPGA Area

Throughput:
- Normalization unit generates results every clock cycle
- Warping Matrix generates a result every 128 cycles
- 8 Warping Matrix units are used

PERFORMANCE?

comparing to GPUs
on image algorithms

Evaluation Platforms
GPU - NVidia Tesla processor
- 30 Streaming Multiprocessors (8

cores each) total of 240 cores
- Both GPGPU-Sim and measured

values running on a Tesla processor
- 1, 4, 10, and 30 Streaming

Multiprocessor configurations tested

FPGA - Virtex 6 LX760
- Programmed in ROCCC compliant C
- Unrolled for different levels of

parallelism
• One loop body, 4x4 loop bodies, and 4x8 loop

bodies

- All hardware for one application
created through the tuning
parameters of ROCCC and one
source file

Benchmarks
- Brightness Filter
- Color Extraction
- Box Filter
- Gaussian Blur
- Blend
- Sobel
- Median Filter
- Pixelation

Throughput Comparison

0

5

10

15

20

Box Filter Blend Filter Brightness Filter Color Extraction Gaussian Blur Median Filter Pixelation Filter Sobel Average

Pixels Out per Cycle

N
um

b
er

 o
f P

ix
el

s

GPU 1SM GPU 4SM GPU 10SM GPU 30SM FPGA 1x1 FPGA 4x4 FPGA 4x8

Execution Time

0

0.25

0.50

0.75

1.00

Box Filter Blend Filter Brightness Filter Color Extraction Gaussian Blur Median Filter Pixelation Filter Sobel Average

Real Execution Time Normalized to Max per Benchmark

GPU 30SM FPGA 4x4 FPGA 4x8

PRODUCTIVITY?

face detection example

Viola-Jones Face Detection

Detect forward facing faces
- Works on a sliding window over an image
- Window must be scaled several times to detect different sized

faces

24 classifier stages
- Many features in each stage
- Each feature is identical computation with different values

Software runs at 1.5 seconds / frame (.66 frames/
sec) on average
- 600x600 sized images

VJ - Software v/s Hardware

! !

!"#$%&

!"#$%'

!"#$%(

!"#$%)

*#+,

*#+,

*#+,

*#+,

-#..

/0"%$1#,2/3#$%

! !

!"#$%& !"#$%' !"#$%(!"#$%)

*#++

,-.

*#++

/-"%$0#12/3#$%

Software Algorithm

Hardware Algorithm

Productivity

ROCCC

Conference
paper

170,000 lines
C code

2 engineers
3 days

synthesizable
VHDL code

Results
Productivity gains
- Well known, de facto standard, available in code repositories, OpenCV,

17,000 lines of C code
- Two engineers, with no prior knowledge of code or application domain

(Computer Vision)
- read original paper, open the code distribution
- ROCCC ported algorithm developed in 3 days, resulting in synthesizable

VHDL

Approximately 3000 features in software
- 1 feature 0.2% of the FPGA
- Approximately 510 features per FPGA, 2040 total on the HC-1

Stage optimizations
- Last 8 stages (1467 total features) very close to original algorithm
- 343 frames per second
- 520X improvement over software

Other Applications

Short strings matching
- bioinformatics
- 90 - 200x over Bowtie

XML query matching
- whole twig matching, expressed as Xpath
- equivalent to CFG recognition
- 2 to 4 orders of magnitude over CPU and GPU
- no memory off loading

Conclusion

ROCCC 2.0 - A third generation C to HDL tool
- designed for code acceleration (not general hardware

design)
- extensive compile-time optimizations and transformations
- modular bottom-up designs with code reuse
- code generation independent of target platform, first

attempt at abstractions

Productivity: >10x over HDL design
- small cost in additional area, being improved right now
- much better results on large codes (≠small kernels)

Ever widening spectrum of applications

Questions?

Thank you!

ROCCC 2.0
http://www.jacquardcomputing.org

