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FPGA CODE ACCELERATION

opportunities & challenges



Opportunities: High Throughput

 Multiple studies report
- wireline throughput on FPGA code
- one to four orders of magnitude speed-up 

against software
 V/s GPUs
- One to two orders speed-up



why FPGAs as code accelerators?

The efficiency of 
hardware

The programmability of 
software

Speedup 
 1 to 4

orders of 
magnitude



efficiency

Limitations of stored program model
- software is in memory 
- software controls datapath
- datapath controls data 

On FPGA

software is the datapath 



efficiency & parallelism

Highly repetitive computation on streamable data
- efficiency advantage of spatial computing: ~ 10x*

- parallelism advantage of FPGAs: ~ 100x
- pipelining advantage: ~ 10x
- clock rate disadvantage of FPGAs: ~ 0.20x

~ 2,000x

❖10% would get you a paper in a top computer architecture conference!

*Guo et al. in 2004 Symp. On FPGA, February 2004



why FPGAs as code accelerators?

HDL programming:
Unfamiliar behavioral 

languages
Tedious low level circuit 
design, Timing sensitive

Complex tool-chain:
synthesis, place & route

Many 
man-months/
application

not

programmability!

√



Main Challenge

HLL to circuit
Imperative HLL Circuit

language algorithmic, procedural
time insensitive

behavioral,
timed

sequencing temporal & sequential concurrent

memory central, virtual distributed, 
registers

limit memory size circuit area



Challenge 
Algorithm

11

Stored Program Circuit

minimize number of steps 
per unit data

minimize area used per 
unit data

maximize unit data per 
clock cycle

minimize clock cycle time

Needed: complete application restructuring using spatially 
concurrent algorithms



Challenge 
Data size

Stored Program
- fixed word/datapath size: 8, 16, 32, 64, 128, 256 ...

Circuit
- smaller area: more parallelism & shorter clock cycle ==> 

higher throughput

- customizable data size: to fit dynamic range of data, precision



Challenge 
Data access

Stored Program FPGA

cache memory X

virtual memory X

memory mapped I/O X

standard memory 
interface X



Why are GPUs in HPC?

chip 
design

owner?

owner?
reference 

board
design

owner?

nVidia 
manages the 
whole stack



ROCCC 2.0 

ROOTS & VISION



What is ROCCC?

Riverside Optimizing Compiler for Configurable Circuits
Designed for the generation of FPGA code accelerators 
from C
- Not an EDA tool!
- Focus is on loop nests and streaming data

• extensive loop and array analysis for parallelism
Designed to:
- achieve same clock speed as hand-written HDL
- keep the user in full control: 

• algorithm and design space exploration
• only what is well understood is automated



Origins Of ROCCC 1.0

SA-C (Single Assignment C): Colorado State
- Language + compiler project

• demonstrated efficient hardware based upon single assignment 
property

StreamsC: LANL
- Addition of streaming mechanisms to C, explicit parallelism
- Now ImpulseC

ROCCC 1.0
- Purely top down approach
- Limits the design space that can be explored



Why ROCCC 2.0?



Hardware Specification Problem

App.
Algorithm

C 
Program

Hardware 
Implementations

?

my favorite solution



Why ROCCC 2.0?



Abstractions

ABSTRACTIONS!
• secret ingredient in the computing revolution of the past 60 years
• none such, yet, for FPGAs

Compilers rely on abstractions of the hardware 
eco-system

• virtual memory, memory mapped I/O etc

ROCCC 2.0: two data source abstractions
- streams & random access memory
- inferred by compiler



Interface Abstractions
Memory

Ethernet

SATA

ROCCC
Code

BRAM
FPGA

memory interface

stream interface

platform specific 
interface core



Why ROCCC 2.0?



Exploration
example:

two loops nested accessing two arrays

Unroll loop 1 
or loop 2? 

Partial or full 
unroll? 

Access arrays in 
chunks or as 
streams? 

One or two 
memory banks? Merge 

arrays? 

Multiple clock 
domains? 

Fuse the 
loops? Design 

space 
explosion 



ROCCC 2.0 Vision

Give user better control over outcome
Use C to build modular computing 
elements

- modular design
- bottom-up construction
- composable and reusable modules

Abstract away platform specifics 
- from compiler code generation: interface to memories 

Support efficient design space exploration
- user driven, platform aware



ROCCC 2.0 

IMPLEMENTATION



ROCCC 2.0

Enable higher level programming of FPGAs
- Transform a subset of C 
- Focus on hardware-appropriate algorithms as opposed to generic C

Enable reusability, composability, and portability
- Modular approach to hardware construction
- Separate platform interface from compiler 
- Tuning of applications to particular platform accomplished through 

optimizations - GUI

Generate high throughput circuits
- Extensive optimizations

Free, open source toolset



compiler 
generated

Decoupled Execution
Memory

Input Smart Buffer

pipelined datapath

Memory

Output Buffer

DMA
 Engine

DMA
 Engine

loop nest => 
pipelined datapth

designed to reuse 
on chip data

FIFO buffer

Every cycle:
• Input smart buffer 

pushes data to 
datapath

• Output buffer collects 
data

Memory can be on or 
off chip or board



Modular Bottom-up Design

Modules and Systems
Modules:
- Self contained hardware computational blocks, expressed in C
- Bottom-up composition of modules
- Standard database (SQLite3) contains all information on 

modules either in C, VHDL, or netlists

Systems
- Process streams of data in critical loops
- Can use modules
- Many user controllable optimizations



Module Code
// Interface
typedef struct
{
  int realOne_in ;
  int imagOne_in ;
  int realTwo_in ;
  int imaTwo_in ;
  int realOmega_in ;
  int imagOmega_in ;

  int A0_out ;
  int A1_out ;
  int A2_out ;
  int A3_out ;
} FFT_t ;

// Implementation
FFT_t FFT(FFT_t f)
{
  int tmp1 ;
  int tmp2 ;
  
  tmp1 = f.realOmega_in * f.realTwo_in ;
  tmp2 = f.imagOmega_in * f.imagTwo_in ;
  
  f.A0_out = f.realOne_in + tmp1 - tmp2 ;
  // The other outputs computations go here...
  return f ;
}

Interface
A struct that specifies 
inputs and outputs

Implementation
A function that describes 
computation inside the 
black box
All outputs must be 
assigned

input registers

output registers

internal registers



Module Instantiation

All Modules accessible as 
functions
- “roccc-library.h”
- Called as any other C 

function
Standard database 
maintains all module 
information
GUI supports automatic 
insertion of module 
instantiations

#include “roccc-library.h”

typedef struct
{
  int input0_in ;
  // Other inputs

  int tmp0_out ;
  // Other outputs
} FFTOneStage_t ;

FFTOneStage_t FFTOneStage(FFTOneStage_t t)
{
  FFT(t.input0_in,
      t.omega0_in,
      t.input16_in,
      t.omega1_in,
      t.input17_in,
      t.input1_in,
      t.temp0_out,
      t.temp1_out,
      t.temp2_out,
      t.temp3_out) ;

  // Others ...

  return t ;
}

module instantiation



System Code

#include “roccc-library.h”

void firSystem()
{
  int A[100] ;
  int B[100] ;

  int i ;
  int endValue ;
  int myTmp ;

  for(i = 0 ; i < endValue ; ++i)
  {
    // Data reuse is detected in
    //  loops by the compiler
    FIR(A[i], A[i+1], A[i+2], 
        A[i+3], A[i+4], myTmp) ;
    B[i] = myTmp ;
  }
}

actual value passed to 
hardware at runtime

module instantiation can be 
duplicated if loop is unrolled

identified as input  & output streams



ROCCC Transformations

Standard
- CFG, DFG, and UD/DU
- Constant propagation/

folding
- Copy propagation
- Dead and unreachable 

code elimination
- Scalar renaming
- Common subexpression 

elimination

Loop
Unrolling
Fusing
Interchange
Peeling
Tiling
Unswitching
Invariant code motion

Array
Scalar replacement
Array renaming
RAW and WAW 
elimination
Feedback elimination
Systolic array 
generation
Sequential loop 
pipelined unrolling
Temporal CSE

specific to hardware



Hardware Optimizations
Redundancy Specification
Pipelining and retiming
- Ability to specify weights for basic operations to guide the number of 

pipeline stages

Smart Buffer Generation
- Keep memory accesses that will be reused to minimize off chip requests

Systolic array generation
- Wavefront algorithms are coded as nested for loops that iterate over a 

two-dimensional array
- Specific set of optimizations to transform into a systolic array

Temporal common subexpression elimination
- Remove common code across loop iterations
- Extends to the removal of modules across loop iterations and addition of 

feedback variables



Platform Independent 
Interfacing

ROCCC Generates Generic Hooks
- Memories - address generator
- Streams - FIFOs

Each interface configurable by the user on a 
stream-by-stream basis
- Number of outgoing memory requests
- Number of reads/writes per clock cycle

Optimized for maximum throughput
- Can support reading values every clock cycle or as fast 

as can be fed



ROCCC 2.0 Modules
A module, in a module, in a … you get the idea

optimizations
transformations

C 
module

VHDL 
module

VHDL 
module

VHDL 
moduleROCCC

core
module

core
module

core
module

database specs of every module, area, timing, etc

3 different 
transformations 

options



Importing Modules

C 
module

VHDL 
module

core
module

ROCCC

C code
module or system

synthesis tool

place & route tool

VHDL

netlist

exposed to ROCCC

exposed to synthesis tool

preserved physical 
characteristics



ROCCC 2.0 Features

Support for modular circuit design in C
- Reusable modules, in C, VHDL or cores
- Bottom-up design and top-down designs supported
- External IP cores integrated in ROCCC designs
- Partial compilation and partial synthesis with reuse
- Inlining and black box instantiation supported

Subset of C with no additional keywords
- ROCCC-code compiled and run with a software compiler

Support for variable bit width
- User control over precision of arithmetic operations

Floating point operations
- half (16-bit), single (32-bit) or double precision (64-bit)



ROCCC 2.0 Features

Automatic VHDL testbench code generation
Platform independent code generation
- allows fast re-targeting

User control over all transformations, optimizations
- Automate only what is fully understood, by us and the user!
- High-level transformations: loops and arrays
- Low-level optimizations: DFG and circuit levels
- Fine-grained control over low level optimizations

• pipelining depth, fanout tree generation
• parallelization of input and output streams



PERFORMANCE?

dynamic time warping 

a data mining example



Dynamic Time Warping
Data mining using subsequence similarity search on time 
series
Relies on dynamic programming on two strings: signal and 
query

E. Keogh and C.A. Ratanamahatana. Exact indexing of dynamic time warping.  Knowledge and Information Systems, 7(3):358{386, 2005.



Dynamic Time Warping

C

Q

C

Q

Warping path w  

Figure 1 (left-top) Two time series sequences which are similar but out of 
phase. (right) To compute the dynamic time warping distance and to align 
the sequences, we construct a warping matrix and find a warping path, 
represented by solid squares.  

The time complexity to compute the D(C,Q) is O(m2), 
and the space complexity is also O(m2). If we only need the 
value of the distance (i.e. d(m,m)) we can delete the trace of 
the warping path, and thus, the space complexity can be 
reduced to O(m) by storing only two columns of the matrix. 

A. Definition of the Problem 
We are now in a position to define the subsequence 

search problem: 

Given a time series T = t1,t2 n and a query Q = 
q1,q2 m , find the subsequence Cs,m of T such that 
D( s,m, s n-m+1, is minimum. 

Given the above definition, we could devise a brute force 
algorithm shown in Table 1, which takes O(nm2) time and 
O(nm) space. For completeness, we also show the 
pseudocode for computing the DTW distance in Table 2. 

TABLE 1: SUBSEQUENCE SEARCH ALGORITHM 

Procedure  !"#$%&"%'(%!%)*(+,-./011
 -2131456%1$%*5%$1781'1975'4$1
 /21/"%*:1456%1$%*5%$178161975'4$1
1 ;<=7*6)>5;%,/01
2 !"#$$1?1@1%"1'<6A@1
3 1 ;<=7*6)>5;%,B$.601
4 1 B769"4%1!,"#$%$&01
5 1 C9D)4%165'56"61581'%(%$$)*:1

TABLE 2: DTW ALGORITHM 

Procedure  E,B./011
 B2131456%1$%*5%$1781'1975'4$.1B,F0?1 1
 /2131456%1$%*5%$178161975'4$.1/,F0?1 1
1 $1?1F1
2 !"#151?1F1%"1611
3 1 D,5.$01?1GB,@0</,50G1
4 $1?1$ @1HH1I7*179%*)457'1
5 !"#1J1?1K1%"1'11
6 1 !"#151?1F1%"161
7 1 11D,5.$01?1GB,J0</,50G1A1

111165',D,5<@.$0.D,5.$ @0.D,5<@.$ @001
8 1 $1?1$ @'
9 #&%'#(1D,'.$ @01

We have chosen the simplest possible problem definition 
with one query, one time series and the same subsequence 
length (m). There are more general subsequence search 
problems where many queries [29] and time series are 
involved, or where rotation/phase invariance is required 
under DTW [34][26]. However, all such problems can 
benefit directly from a speedup of the simple definition.  

B. Why Current Software Solutions Are Not the Answer 
As we hinted at above, the several apparent software 

solutions to the task at hand contain a serious error. We can 
best demonstrate this with a simple experiment. 

Suppose we task a DTW subsequence search with the 
simple task of detecting the heartbeats of an individual, using 
one of that same individual s heartbeats. It is difficult to 
imagine a simpler problem.  

We begin by downloading a long ECG sequence from a 
61-year-old female and manually extracting a typical beat as 
our query [39]. We also manually extract some additional 
adjacent beats and compare them to our query, finding them 
to be an average distance of about 20.0, so we set our beat 
detector at a conservative threshold of 30.0. Figure 2 shows 
the beats detected in the first 1,800 datapoints, as we can see, 
the majority of the beats are missed. How could this be?  
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Figure 2: A query heartbeat (left) is scanned across an ECG trace. (top-
right) Only three of the twelve beats are detected. Plotting the distance 
from the query to the relevant subsequence (bottom) reveals that slight 
differences in a subsequence s mean value (offset) completely dominate the 
DTW distance calculation, dwarfing any contribution from the similarity of 
the shape. 

Note that while the local mean of the ECG trace starts at 
about zero, which is also the approximate mean of the query, 
the trace slowly rises to have a local mean of about 1.0, then 
descends below zero (allowing the detection of a single beat 
at about 1,500 as the mean crosses zero).  

The problem is that the SPRING algorithm [27] does not 
(and, more critically cannot) normalize the offset or 
amplitude of the subsequences of the longer time series. It is 
therefore implicitly assuming that the query will happen to 
have the same offset and amplitude as the matching 
subsequence. However, in virtually every domain that 
assumption is unwarranted. For example, virtually all ECGs 
wander up and down as in our example, the effect is known 
as a wandering baseline [18]. Similar problems are observed 
in motion capture [16], astronomy, entomology, industrial 
process telemetry, EEGs, etc.   

It is important to recognize that there is no simple fix for 
this problem. The SPRING [27] algorithm achieves its 
speedup by exploiting the redundancy of calculations in a 
sliding DTW matrix, but if each subsequence is z-
normalized, as it must be to obtain meaningful results, then 
there will be no redundant calculations to exploit. For brevity 

Detect a pattern across a time series
Normalization of data is extremely important



DTW - Software Solution
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DTW - Hardware Architecture
mainly in three ways. First, it maximizes the throughput by 
exploiting loop and instruction level parallelism. Second, it 
reuses the data, and third, it generates a pipelined datapath to 
minimize the number of clock cycles [29]. 

Our FPGA design consists of two major blocks: 
Normalizer and Warper, to normalize the input data and run 
the actual DTW matrix calculations, respectively (Figure 6). 
Input data streamed into the system are first given to a First-
In-First-Out (FIFO) buffer. The size and input ratio of this 
FIFO can be adjusted according to the FPGA interconnection 
mechanism. However, the output of the FIFO generates one 
sample (8 bits) every clock cycle. Next, the output of the 
FIFO is fed into the Normalizer module. Initially, 
Normalizer waits until the first window is received. Every 
following normalization operation reuses m-1 operands of 
the previous operation, where m is the query length. After the 
first output is produced, a new output is generated every 
clock cycle. This output is given to another FIFO, which acts 
as the intermediate memory component between the 
Normalizer and the Warper.  

Input
PINs

Input Buffer

m Datapoints
Normalizer

Internal Buffer

m Datapoints

Removing Buffer

1 Datapoint

Warper

1 Datapoint

 

Figure 6: FPGA Block Diagram. Thick lines are for m-point wide 
connections. Thin lines are for one-point wide connections. Buffers are 
simple FIFOs. 

Internally, a trivial Normalizer module stores m-partial 
sliding windows. In every clock cycle, it updates statistics 
for all of the partial windows and outputs the window for 
which the normalization is complete. Thus, it needs quadratic 
O(m2) space in the FPGA and does not scale with larger 
query lengths. In order to support larger query lengths, we 
implemented an online Normalizer, which does not 
remember intermediate states. It computes the mean ( ) and 
standard deviation ( ) online and normalizes exactly one 
window in every clock cycle. Thus, it needs linear O(m) 
space in the FPGA. Although the trivial Normalizer has 
shown better performance in speed due to less overhead, it 
does not make any difference in the overall system 
performance. The reason for this is that the Warper module 
is the real performance bottle-neck as described later. 

The Online Normalizer consists of three sub-units, as 
shown in Figure 7. The first unit calculates the sum and sum 
of squares of all the inputs in a sliding window fashion, by 
adding the new value while subtracting the oldest value to be 

until the first window is completely received through the 

and the sum for the second window is obtained at the output. 
This output is also given to the Normalize Divider sub-unit, 
where the mean and the standard deviation of the latest 
window are obtained. The input stream is provided to the 
third unit through a buffer. The size of this buffer depends on 
the delay of the first two modules. The third module must 

wait until the corresponding mean and standard deviation 
values are available for a given window. This delay is 
provided by the Datapoint Buffer, which is automatically 
added by ROCCC. The unit then runs the actual 
normalization function. The generated normalized data is 
provided to the systolic array (warper) through a buffer, as 
shown in Figure 6. 
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m Datapoints
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Figure 7: Online Normalization Unit. The sum and sum of squares are 
obtained in a sliding window approach, by adding the new input and 
subtracting the oldest value. The input datapoints are delayed through the 
Datapoint Buffer, to make sure that the correct mean and standard 
deviation are used. 

The Warper module is implemented as a systolic array 
[3]. A systolic array consists of data processing units 
connected in a matrix fashion. These data processing units 
(i.e. cells) share the information with their neighbors 
immediately after processing. Using ROCCC -in 
systolic array generator, we simply obtain the hardware 
description of the Warper module. Structurally, the Warper 
module is the same for any window size, except for the size 
of the systolic array. This size can be adjusted in the ROCCC 
code by tuning a parameter. A Warper module generates one 
DTW distance between the normalized sliding window and 
the query time series in every m clock cycle where m is the 
window size/query length. Since the normalization unit is m 
times faster than the Warper unit, we place multiple Warper 
units to operate on separate normalized windows generated 
by the normalization unit. Ideally, if we had unlimited FPGA 
area, we could place m Warper modules to get the maximum 
processing speed of one DTW distance in every clock cycle. 
When multiple Warper modules are in place, the Internal 
Buffer output is fed into them in a round robin fashion.  

VI. EVALUATION 
In this section, we show the performances for the DTW 

subsequence search problem in different hardware settings. 
We use the following platforms: 

Software: Intel Xeon E5540 CPU at 2.53 GHz 
SSE : Intel i7- 920 CPU at  2.66 GHz 
GPU: NVIDIA Tesla C1060 with 240 cores 
FPG A : Xilinx Virtex 5 LX-330 

The SSE (Streaming Single Instruction Multiple Data 
(SIMD) Extensions) is an instruction set extension to 
x86-architecture. It makes use of 128-bit SSE registers and 
can merge four 32-bit data to operate concurrently. The 
software implementation proposed in Table 1 can be 
parallelized by making use of data independencies. However, 

mainly in three ways. First, it maximizes the throughput by 
exploiting loop and instruction level parallelism. Second, it 
reuses the data, and third, it generates a pipelined datapath to 
minimize the number of clock cycles [29]. 

Our FPGA design consists of two major blocks: 
Normalizer and Warper, to normalize the input data and run 
the actual DTW matrix calculations, respectively (Figure 6). 
Input data streamed into the system are first given to a First-
In-First-Out (FIFO) buffer. The size and input ratio of this 
FIFO can be adjusted according to the FPGA interconnection 
mechanism. However, the output of the FIFO generates one 
sample (8 bits) every clock cycle. Next, the output of the 
FIFO is fed into the Normalizer module. Initially, 
Normalizer waits until the first window is received. Every 
following normalization operation reuses m-1 operands of 
the previous operation, where m is the query length. After the 
first output is produced, a new output is generated every 
clock cycle. This output is given to another FIFO, which acts 
as the intermediate memory component between the 
Normalizer and the Warper.  
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Figure 6: FPGA Block Diagram. Thick lines are for m-point wide 
connections. Thin lines are for one-point wide connections. Buffers are 
simple FIFOs. 

Internally, a trivial Normalizer module stores m-partial 
sliding windows. In every clock cycle, it updates statistics 
for all of the partial windows and outputs the window for 
which the normalization is complete. Thus, it needs quadratic 
O(m2) space in the FPGA and does not scale with larger 
query lengths. In order to support larger query lengths, we 
implemented an online Normalizer, which does not 
remember intermediate states. It computes the mean ( ) and 
standard deviation ( ) online and normalizes exactly one 
window in every clock cycle. Thus, it needs linear O(m) 
space in the FPGA. Although the trivial Normalizer has 
shown better performance in speed due to less overhead, it 
does not make any difference in the overall system 
performance. The reason for this is that the Warper module 
is the real performance bottle-neck as described later. 

The Online Normalizer consists of three sub-units, as 
shown in Figure 7. The first unit calculates the sum and sum 
of squares of all the inputs in a sliding window fashion, by 
adding the new value while subtracting the oldest value to be 

until the first window is completely received through the 

and the sum for the second window is obtained at the output. 
This output is also given to the Normalize Divider sub-unit, 
where the mean and the standard deviation of the latest 
window are obtained. The input stream is provided to the 
third unit through a buffer. The size of this buffer depends on 
the delay of the first two modules. The third module must 

wait until the corresponding mean and standard deviation 
values are available for a given window. This delay is 
provided by the Datapoint Buffer, which is automatically 
added by ROCCC. The unit then runs the actual 
normalization function. The generated normalized data is 
provided to the systolic array (warper) through a buffer, as 
shown in Figure 6. 
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Figure 7: Online Normalization Unit. The sum and sum of squares are 
obtained in a sliding window approach, by adding the new input and 
subtracting the oldest value. The input datapoints are delayed through the 
Datapoint Buffer, to make sure that the correct mean and standard 
deviation are used. 

The Warper module is implemented as a systolic array 
[3]. A systolic array consists of data processing units 
connected in a matrix fashion. These data processing units 
(i.e. cells) share the information with their neighbors 
immediately after processing. Using ROCCC -in 
systolic array generator, we simply obtain the hardware 
description of the Warper module. Structurally, the Warper 
module is the same for any window size, except for the size 
of the systolic array. This size can be adjusted in the ROCCC 
code by tuning a parameter. A Warper module generates one 
DTW distance between the normalized sliding window and 
the query time series in every m clock cycle where m is the 
window size/query length. Since the normalization unit is m 
times faster than the Warper unit, we place multiple Warper 
units to operate on separate normalized windows generated 
by the normalization unit. Ideally, if we had unlimited FPGA 
area, we could place m Warper modules to get the maximum 
processing speed of one DTW distance in every clock cycle. 
When multiple Warper modules are in place, the Internal 
Buffer output is fed into them in a round robin fashion.  

VI. EVALUATION 
In this section, we show the performances for the DTW 

subsequence search problem in different hardware settings. 
We use the following platforms: 

Software: Intel Xeon E5540 CPU at 2.53 GHz 
SSE : Intel i7- 920 CPU at  2.66 GHz 
GPU: NVIDIA Tesla C1060 with 240 cores 
FPG A : Xilinx Virtex 5 LX-330 

The SSE (Streaming Single Instruction Multiple Data 
(SIMD) Extensions) is an instruction set extension to 
x86-architecture. It makes use of 128-bit SSE registers and 
can merge four 32-bit data to operate concurrently. The 
software implementation proposed in Table 1 can be 
parallelized by making use of data independencies. However, 



DTW - Performance

Evaluation 
Platforms:
- Software: Intel 

Pentium i7 2.66 
GHz, 6 GB RAM

- FPGA: Xilinx 
Virtex-5 LX-330

- GPU: NVIDIA Tesla 
T10
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D. Sart, A. Mueen, W. Najjar, V. Niennattrakul, and E. Keogh. Accelerating Dynamic Time Warping Subsequence Search with GPUs and FPGAs, in 
IEEE Int. Conf. on Data Mining, Sydney, Australia, Dec. 2010.



Details

Clock rate
- Normalization Module runs at 174.6 MHz.
- Warping Matrix runs at 240 MHz.

Area
- Normalization Module requires 13% of FPGA Area
- Warping Matrix requires 7% of FPGA Area

Throughput: 
- Normalization unit generates results every clock cycle
- Warping Matrix generates a result every 128 cycles
- 8 Warping Matrix units are used



PERFORMANCE?

comparing to GPUs 
on image algorithms



Evaluation Platforms
GPU - NVidia Tesla processor
- 30 Streaming Multiprocessors (8 

cores each) total of 240 cores
- Both GPGPU-Sim and measured 

values running on a Tesla processor
- 1, 4, 10, and 30 Streaming 

Multiprocessor configurations tested

FPGA - Virtex 6 LX760
- Programmed in ROCCC compliant C
- Unrolled for different levels of 

parallelism
• One loop body, 4x4 loop bodies, and 4x8 loop 

bodies

- All hardware for one application 
created through the tuning 
parameters of ROCCC and one 
source file

Benchmarks
- Brightness Filter
- Color Extraction
- Box Filter
- Gaussian Blur
- Blend
- Sobel
- Median Filter
- Pixelation



Throughput Comparison
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Execution Time
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PRODUCTIVITY?

face detection example



Viola-Jones Face Detection

Detect forward facing faces
- Works on a sliding window over an image
- Window must be scaled several times to detect different sized 

faces

24 classifier stages
- Many features in each stage
- Each feature is identical computation with different values

Software runs at 1.5 seconds / frame (.66 frames/
sec) on average
- 600x600 sized images



VJ - Software v/s Hardware
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Productivity

ROCCC

Conference
paper

170,000 lines
C code

2 engineers
3 days

synthesizable
VHDL code



Results
Productivity gains
- Well known, de facto standard, available in code repositories, OpenCV, 

17,000 lines of C code
- Two engineers, with no prior knowledge of code or application domain 

(Computer Vision)
- read original paper, open the code distribution
- ROCCC ported algorithm developed in 3 days, resulting in synthesizable 

VHDL

Approximately 3000 features in software
- 1 feature 0.2% of the FPGA
- Approximately 510 features per FPGA, 2040 total on the HC-1

Stage optimizations
- Last 8 stages (1467 total features) very close to original algorithm
- 343 frames per second
- 520X improvement over software



Other Applications

Short strings matching
- bioinformatics
- 90 - 200x over Bowtie

XML query matching
- whole twig matching, expressed as Xpath
- equivalent to CFG recognition
- 2 to 4 orders of magnitude over CPU and GPU
- no memory off loading



Conclusion

ROCCC 2.0 - A third generation C to HDL tool
- designed for code acceleration (not general hardware 

design)
- extensive compile-time optimizations and transformations
- modular bottom-up designs with code reuse
- code generation independent of target platform, first 

attempt at abstractions

Productivity: >10x over HDL design
- small cost in additional area, being improved right now
- much better results on large codes (≠small kernels)

Ever widening spectrum of applications



Questions?

Thank you!

ROCCC 2.0  
http://www.jacquardcomputing.org


