Programmability, Performance and

Productivity
The Emergence of FPGA Code Accelerators

SPL 2011 - CorpoBA, ARGENTINA

Walid A Najjar
University of California Riverside
Jacquard Computing Inc.

DGR B R EED 4N AE

Credits

<>
Over the past six years @
Dr. Jason Villarreal (Jacquard Computing) Jacaua/-d

Adrian Park (Jacquard Computing)

Roby Atadero (Jacquard Computing) R IVERSITY 07 CALIFORNIA
Robert Halstead (UCR) IVERSI D E
Dr. Zhi Guo (Huawei)

Dr. A. Betul Buyukkurt (Google)

John Cortes (Huawei)
Dr. Dinesh Suresh (AMD)

FPGA CODE ACCELERATION

opportunities & challenges

Opportunities: High Throughput

O Multiple studies report
- wireline throughput on FPGA code

- one to four orders of magnitude speed-up
against software

o V/s GPUs

- One to two orders speed-up

why FPGAs as code accelerators?

The efficiency of

Speedup
hardware 5 1to 4
o orders of
The programmability of magnitude

software

efficiency

OLimitations of stored program model
- software is in memory
- software controls datapath
- datapath controls data

o On FPGA

O software is the datapath

efficiency & parallelism

*Guo et al. in 2004 Sywp. On FPGA, February 2004

o

Highly repetitive computation on streamable data
- efficiency advantage of spatial computing: ~ 10X’

- parallelism advantage of FPGAs: ~ 100x [
- pipelining advantage: ~ 10x “‘" ~ 2,000x

- clock rate disadvantage of FPGAs: ~ 0.20x

< 107 would get you a paper in a top computer architecture conference!

ok

why FPGAs as code accelerators?
programmability!

HDL programming:
Unfamiliar behavioral
languages
Tedious low level circuit - : Many
design, Timing sensitive ™ ',* man"'_non_thSI
application
Complex tool-chain:
synthesis, place & route

Main Challenge
HLL to circuit

Imperative HLL Circuit

algorithmic, procedural behavioral,
language M un] !
time insensitive timed

sequencing| temporal & sequential concurrent
: distributed,

memory central, virtual :

registers

limit memory size circuit area

Challenge
Algorithm

Stored Program Circuit

minimize area used per

minimize number of steps unit data
per unit data maximize unit data per
clock cycle

minimize clock cycle time

Needed: complete application restructuring using spatially
concurrent algorithms

1

Challenge
Data size

O Stored Program
- fixed word/datapath size: 8, 16, 32, 64, 128, 256 ...

O Circuit

- smaller area: more parallelism & shorter clock cycle ==>
higher throughput

- customizable data size: to fit dynamic range of data, precision

Challenge
Data access

Stored Program FPGA

cache memory X
virtual memory / X
memory mapped 1/O / X
stanfjard memory / X
interface

Why are GPUs in HPC?
@ owner? [BS]

NVIDIA.

GPU Computing

CUDA
nVidia
reference
i ppeas manages the
board < oWner? g g
design whole stack

chip owner?
design nvinDia

ROCCC 2.0

ROOTS & VISION

What is ROCCC?

ORiverside Optimizing Compiler for Configurable Circuits

O Designed for the generation of FPGA code accelerators
from C

- Not an EDA tool!
- Focus is on loop nests and streaming data
 extensive loop and array analysis for parallelism
ODesigned to:
- achieve same clock speed as hand-written HDL
- keep the user in full control:

« algorithm and design space exploration
» only what is well understood is automated

Origins Of ROCCC 1.0

O SA-C (Single Assignment C): Colorado State
- Language + compiler project
» demonstrated efficient hardware based upon single assignment
property

O StreamsC: LANL

- Addition of streaming mechanisms to C, explicit parallelism
- Now ImpulseC

OROCCC 1.0

- Purely top down approach
- Limits the design space that can be explored

Why ROCCC 2.0?

Hardware Specification Problem

' my favorite solution

Why ROCCC 2.0?

Abstractions

OABSTRACTIONS!

 secret ingredient in the computing revolution of the past 60 years
* none such, yet, for FPGAs

oCompilers rely on abstractions of the hardware
eco-system
* virtual memory, memory mapped I/O etc
OROCCC 2.0: two data source abstractions
- streams & random access memory
- inferred by compiler

Interface Abstractions

Memo
Y - memory interface

stream interface

platform specific
interface core

Why ROCCC 2.0?

Merge
arrays?

Partial or full
unroll?

Unroll loop 1
or loop 2?

Exploration

example:
two loops nested accessing two arrays

Fuse the
loops?

ROCCC 2.0 Vision

OGive user better control over outcome

OUse C to build modular computing
elements

- modular design
- bottom-up construction
- composable and reusable modules

OAbstract away platform specifics

- from compiler code generation: interface to memories

OSupport efficient design space exploration
- user driven, platform aware

ROCCC 2.0

IMPLEMENTATION

ROCCC 2.0

O Enable higher level programming of FPGAs

- Transform a subset of C

- Focus on hardware-appropriate algorithms as opposed to generic C
O Enable reusability, composability, and portability

- Modular approach to hardware construction

- Separate platform interface from compiler

- Tuning of applications to particular platform accomplished through

optimizations - GUI

O Generate high throughput circuits

- Extensive optimizations

O Free, open source toolset

Decoupled Execution

DMA
Every cycle: Engine

* Input smart buffer designed to reuse
pushes data to on chip data
datapath

» QOutput buffer collects loop nest => _
data pipelined datapth

Memory can be on or

off chip or board FIFO buffer

DMA
Engine

Modular Bottom-up Design

O Modules and Systems

O Modules:

- Self contained hardware computational blocks, expressed in C
- Bottom-up composition of modules
- Standard database (SQLite3) contains all information on
modules either in C, VHDL, or netlists
O Systems
- Process streams of data in critical loops
- Can use modules
- Many user controllable optimizations

Module Code

// Interface
typedef struct

o Interface

O A struct that specifies
inputs and outputs

O Implementation

o A function that describes
computation inside the
black box

o All outputs must be
assigned

{

} FFT_t ;

int
int
int
int
int
int

int
int
int
int

realOne_in ;

imagOne_in ;

FealTonJ.n 3 [nput reg/sters
imaTwo_in ;

realOmega_in ;

imagOmega_in ;

AQ0_out ;
Al out ; oyfput registers
A2 out ;
A3 out ;

;

// Implementation
FFT_t FFT(FFT_t f)

{

int
int

tmpl
tmp2

tmpl ; : i
2 | internal registers

£ rea].Omega_in * £, realTwo_in 7
f.imagOmega_in * f.imagTwo_in ;

£.A0_out = f.realOne_in + tmpl - tmp2 ;

// The other outputs computations go here...

return £ ;

Module

o All Modules accessible as
functions

- ‘“roccc-library.h”

- Called as any other C
function

o Standard database
maintains all module
information

o GUI supports automatic
insertion of module
instantiations

Instantiation

#include “roccc-library.h”

typedef
{

struct

int inputo_in g
// Other inputs

int tmpO_out ;
// Other outputs

-

FFTOneStage_t ;

FFTOneStage t FFTOneStage (FFTOneStage t t)

{

FFT (t.
.omegal_in,
.inputlé_in,
.omegal_in,
.inputl?7_in,

o ot o o of of of oF ot

inputO_in,

module instantiation
inputl_in,
temp0_out,
templ out,
temp2_out,

.temp3_out) ;

// Others ...

return t ;

}

System Code

#include “roccc-library.h”

void firSystem()
{
int A[100] ;

int B[100] identified as input & output streams

int i ;
Lhil bhavatue | i< actual value passed to

int myTmp ; hardware at runtime

for(i = 0 ; i < endValue ; ++i)
{
// Data reuse is detected in
// loops by the compiler
FIR(A[i], A[i+1], A[i+2], module instantiation can be
RS TR Ty Ty duplicated if loop is unrolled
B[i] = myTmp ;

ROCCC Transformations

O Standard

CFG, DFG, and UD/DU

Constant propagation/
folding

Copy propagation

Dead and unreachable
code elimination

Scalar renaming

Common subexpression
elimination

OLoop

(e]
(e]
(e]
(e]
(e]
(e]
o

Unrolling

Fusing

Interchange

Peeling

Tiling

Unswitching

Invariant code motion

O Array

o Scalar replacement
O Array renaming

o RAW and WAW
elimination

O Feedback elimination

o Systolic array
generation

O Sequential loop
pipelined unrolling

O Temporal CSE

specific to hardware

Hardware Optimizations

O Redundancy Specification
OPipelining and retiming
- Ability to specify weights for basic operations to guide the number of
pipeline stages
O Smart Buffer Generation
- Keep memory accesses that will be reused to minimize off chip requests

O Systolic array generation

- Wavefront algorithms are coded as nested for loops that iterate over a
two-dimensional array

- Specific set of optimizations to transform into a systolic array
O Temporal common subexpression elimination

- Remove common code across loop iterations

- Extends to the removal of modules across loop iterations and addition of
feedback variables

Platform Independent
Interfacing

o0 ROCCC Generates Generic Hooks
- Memories - address generator
- Streams - FIFOs
o Each interface configurable by the user on a
stream-by-stream basis
- Number of outgoing memory requests
- Number of reads/writes per clock cycle
O Optimized for maximum throughput

- Can support reading values every clock cycle or as fast
as can be fed

ROCCC 2.0 Modules

INE RN 3 different
optimizations

transformations VHDL T fra n StoFmaERg

./ options

pecs of every module, area, timing, etc

Importing Modules

preserved physical
" characteristics

exposed to synthesis tool

exposed to ROCCC

VHDL

netist QI

ROCCC 2.0 Features

O Support for modular circuit design in C

- Reusable modules, in C, VHDL or cores

- Bottom-up design and top-down designs supported

- External IP cores integrated in ROCCC designs
Partial compilation and partial synthesis with reuse
- Inlining and black box instantiation supported

O Subset of C with no additional keywords

- ROCCC-code compiled and run with a software compiler
O Support for variable bit width

- User control over precision of arithmetic operations
O Floating point operations

- half (16-bit), single (32-bit) or double precision (64-bit)

ROCCC 2.0 Features

O Automatic VHDL testbench code generation

O Platform independent code generation
- allows fast re-targeting

O User control over all transformations, optimizations
- Automate only what is fully understood, by us and the user!
- High-level transformations: loops and arrays
- Low-level optimizations: DFG and circuit levels
- Fine-grained control over low level optimizations
 pipelining depth, fanout tree generation
 parallelization of input and output streams

PERFORMANCE?

dynamic time warping

a data mining example

Dynamic Time Warping

O Data mining using subsequence similarity search on time
series

O Relies on dynamic programming on two strings: signal and
query

‘ARSSERAP Cy, BRAF,a MRER an RRP oo B 10T T SRR

DUV g VU VN RURBRRAREY g RUNR Vg URRNRRASRANRRERESY
S ST\ /T_DIW

. g ga ¥ UL ,

E. Keogh and C.A. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge and Information Systems, 7(3):358{386, 2005.

Dynamic Time Warping

Distance to the query

120
Threshold = 30 §)
0

0 500 1000 1500

O Detect a pattern across a time series
O Normalization of data is extremely important

DTW - Software Solution

BEER
Normalize

e

Candidate Sequence

DTW - Hardware Architecture

m Datapoints

Input Buffer

Input
PINs

1 Datapoint

Internal Buffer

Normalizer

m Datapoints

Removing Buffer

1 Datapoint]

Warper

Datapoint Buffer

m Datapoints

— LTI 1]
I }

. . (£
Datapoint Normalize Normalize
Adder Divider
To Remove > X il

Window Length

Online
Normalizer

l l mNormalized l
Datapoints
Output to Internal
Buffer

DTW - Performance

[Software
[SSE
H GPU
FPGA
. 100000.00
O Evaluation
Platforms: :g 10000.00
- Software: Intel c})’
Pentium i7 2.66 0] 1000.00
GHz, 6 GB RAM S '
- FPGA: Xilinx o
Virtex-5 LX-330 < 10090
Q
- GPU: NVIDIATesla §g —
=t = 10.00
1.00

20 40 80 160
Input Length (in thousands)

D. Sart,A. Mueen,W. Najjar,V. Niennattrakul, and E. Keogh. Accelerating Dynamic Time Warping Subsequence Search with GPUs and FPGAs, in
IEEE Int. Conf. on Data Mining, Sydney, Australia, Dec. 2010.

Details

O Clock rate
- Normalization Module runs at 174.6 MHz.
- Warping Matrix runs at 240 MHz.

O Area

- Normalization Module requires 13% of FPGA Area
- Warping Matrix requires 7% of FPGA Area
O Throughput:
- Normalization unit generates results every clock cycle
- Warping Matrix generates a result every 128 cycles
- 8 Warping Matrix units are used

PERFORMANCE?

comparing to GPUs
on image algorithms

Evaluation Platforms

OGPU - NVidia Tesla processor

- 30 Streaming Multiprocessors (8
cores each) total of 240 cores

- Both GPGPU-Sim and measured
values running on a Tesla processor

- 1,4,10, and 30 Streaming
Multiprocessor configurations tested

OFPGA - Virtex 6 LX760

- Programmed in ROCCC compliant C

- Unrolled for different levels of
parallelism

* One loop body, 4x4 loop bodies, and 4x8 loop
bodies

- All hardware for one application
created through the tuning
parameters of ROCCC and one
source file

OBenchmarks

Brightness Filter
Color Extraction
Box Filter
Gaussian Blur
Blend

Sobel

Median Filter
Pixelation

Number of Pixels

20

&

=

@

0

Throughput Comparison

Pixels Out per Cycle

ﬂMﬂMhJJMJ

Box Filter Blend Filter Brightness Filter Color Extraction Gaussian Blur Median Fiter Pixelation Filter Sol Average

GPU 1SM W GPU4sM [l GPU 10SM Il GPU 30SM W FPGA 1x1 [l FPGA 4x4 Il FPGA 4x8

Execution Time

Real Execution Time Normalized to Max per Benchmark

.00

0
Box Filter Blend Filter Brightness Filter Golor Extraction Gaussian Blur Median Filter Pixelation Filter Sobel Average

o
S
el

°
@
&

°
N
b

Il GPU 30SM [l FPGA 4x4 [l FPGA 4x8

PRODUCTIVITY?

face detection example

Viola-Jones Face Detection

O Detect forward facing faces
- Works on a sliding window over an image

- Window must be scaled several times to detect different sized
faces

0 24 classifier stages
- Many features in each stage
- Each feature is identical computation with different values
O Software runs at 1.5 seconds / frame (.66 frames/
sec) on average
- 600x600 sized images

VJ - Software v/s Hardware

Integral Image

---=
I Integral Image

i

i H }

Stagel ‘ Stage2 coo StageN

ST e

o And
o
i] Pass
‘ StageN Fail |
\ Hardware Algorithm
Pass

Software Algorithm

Productivity

Conference 170,000 lines
paper C code

2 engineers > synthesizable
3 days ROCCE VHOL code

Results

OProductivity gains

- Well known, de facto standard, available in code repositories, OpenCV,
17,000 lines of C code

- Two engineers, with no prior knowledge of code or application domain
(Computer Vision)

- read original paper, open the code distribution
- ROCCC ported algorithm developed in 3 days, resulting in synthesizable
VHDL
O Approximately 3000 features in software
- 1 feature 0.2% of the FPGA
- Approximately 510 features per FPGA, 2040 total on the HC-1

O Stage optimizations
- Last 8 stages (1467 total features) very close to original algorithm
- 343 frames per second
- 520X improvement over software

Other Applications

OShort strings matching
- bioinformatics
- 90 - 200x over Bowtie

o XML query matching
- whole twig matching, expressed as Xpath
- equivalent to CFG recognition
- 2 to 4 orders of magnitude over CPU and GPU
- no memory off loading

Conclusion

O0ROCCC 2.0 - A third generation C to HDL tool

- designed for code acceleration (not general hardware
design)

- extensive compile-time optimizations and transformations

- modular bottom-up designs with code reuse

- code generation independent of target platform, first
attempt at abstractions

o Productivity: >10x over HDL design
- small cost in additional area, being improved right now
- much better results on large codes (#small kernels)

o Ever widening spectrum of applications

Questions?

Thank you!

ROCCC 2.0
http://www.jacquardcomputing.org

