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Moore’s Law

“The number of transistors on an integrated 

circuit doubles every 12 months.”
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FPGA Capacity Trends

Largest Xilinx FPGA
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FPGA Performance Trends

Historical 

FPGA data

Extrapolation 

from ITRS
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FPGA Energy Trends (W / LC MHz)

Driven by lower 

capacitance and 

voltage
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The Future is 

Digital



A fresh look at some history
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• 1984-1991 Invention
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• 2008-
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The “Ages” of FPGAs
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 Tight technology limits

Efficiency is key

Must innovate architecturally

 FPGAs are much smaller than 

the application problem size

 FPGAs are “Glue Logic”

Design automation is secondary to capacity

Vendors must own tools

of 123

1985-1991 The Age of Invention
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“The Architecture of the Month”
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The Architectural Shakeout

Many devices disappeared in the mid 

1990s

Xilinx: 8100,  6200, 4700, Prizm, …

Plessey, Toshiba, Motorola, IBM, ...

We were hit by fast-moving CMOS 

process technology, particularly 

multiple metal layers.
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 Process Technology
– Rapid scaling with cheap transistors and cheaper interconnect

– Ride the technology wave.  Specialty processes limit scaling

 Applications
– FPGA size approaches the problem size

– Large reconfigurable devices enable communications and 
computation applications during internet “land grab”

 Ease-of-Design Becomes Critical
– Synthesis flow becomes possible, then dominates

– Interconnect-starved architectures die

1992-1999 The Age of Expansion
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FPGAs Close on ASICs
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Moore’s Law

(59% CAGR)

Average Cell-based

Design Start

(25% CAGR)

475K

9,700K

$10 FPGA
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Gates

Routing

XC2000

Special

Arithmetic

Functions

XC4000

Memory

XC4000

High 

Performance

I/O

Virtex

System

Clock

Management

Virtex

3.125 Gigabit 

Transceiver

Virtex-II Pro

DSP

Virtex4
Microprocessor

Virtex-II Pro Ethernet

MAC

Virtex4

2000-2007 The Age of Accumulation
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 Process Technology
– Process and design complexity eliminates “casual” ASIC users

 Applications
– FPGAs are larger than the typical “problem size”

– We are implementing complete systems

– Standards are increasingly important

– Random logic capacity limited by I/O and memory bandwidth

– Power is a growing concern

– Post-bubble cost pressure (!)

 Design effort takes on new dimensions
– Not just glue logic anymore: systems issues come to the fore

– Complete digital systems on FPGAs require new design skills

2000-2007 The Age of Accumulation



Moore’s Second Law

The cost of a semiconductor fab doubles 

every four years.
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Moore’s Second Law
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http://www.kurzweilai.net

http://www.kurzweilai.net/


Moore’s Second Law
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http://www.kurzweilai.net

Capital equipment is more expensive

Mask tooling is more expensive

More subtle effects must be considered

http://www.kurzweilai.net/


Large Return Required to Justify the Expense
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Fewer Integrated Circuit Designs
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Do Transistors Really Become Free?
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http://zone.ni.com

http://zone.ni.com/
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The Future is 

Programmable



Programmable Logic Directions
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More than Moore Moore



Transceiver Speed Expands Rapidly
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Programmable Logic Drives 3D
Stacked Silicon Interconnect
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 Tens of thousands of 

inter-die connections

 Problems solved include 

yield, reliability, heat 

dissipation, signal 

integrity

 Invisible to users

 Delivery: 2011

What 

will 

they 

add 

next?

What 

will 

they 

add 

next?



Return to the “Age of Accumulation?”
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More than Moore

More than More than Moore

Moore



Design Costs Grow Exponentially, Too
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http://www.design-reuse.com

http://www.design-reuse.com/
http://www.design-reuse.com/
http://www.design-reuse.com/


4 Ages   29

Programmable Devices Must Address the Design 

Gap
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Efficient Design 

Methodology is 

Vital
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High-level synthesis

HW / SW partition

TimingStandards and interfaces

Termination

Clock distribution

Noise Margin

Crosstalk

DFM IR drop

Repeaters

Startup init

Transmission lines

Clock generation

Giga-Scale Systems

Deep Sub-Micron
Embedded IP

NBTI

Algorithms
RTL

0, 1 and delay

The Dual Challenges of VLSI

Test
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High-level synthesis

RTL

0, 1 and delay
HW / SW partition

TimingStandards and interfaces

Termination

Clock distribution

Noise Margin

Crosstalk

DFM IR drop

Repeaters

Startup init

Transmission lines

Clock generation

System Design

Platform FPGA
Embedded IP

At Xilinx, we do deep sub-micron design so you 

don’t have to.

NBTI

Algorithms

The FPGA Boolean Abstraction

Test
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Synthesis

RTL

HW / SW partition

Termination

Clock distribution

Noise Margin

Crosstalk

DFM IR drop

Repeaters

Startup init

Transmission lines

Clock generation

ASIC Design

Platform FPGA
Embedded IP

At Xilinx, we do LOGIC design so you don’t have to.

NBTI

Memory hierarchy
Processes CPI

Delay Throughput

Computer Design Network Design

FPGA Systems
Eliminating the Boolean Abstraction

Test



Hardware and Software Programmability
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Zynq: Embedded Processing Platform

 Dual ARM Cortex-A9 w/FPU, 

L1&L2 Cache, 256KB 

Memory, DDR2&DDR3, 

ADC…

 Up to 235K Programmable 

Logic Cells, 400 I/Os, 

10.3Gbps transceivers, PCI 

Express

 AXI between processor and 

logic  [More than 0,1, delay]

 Processor controls FPGA 

configuration

– Multiple security levels 

supported

– Boot in secure or non-secure mode

– Download PL image via network, SD, USB
Page 35



Zynq: Programming

 Out-of-the-box SW programmable

– No FPGA design expertise required

 Standard OS support

– Dual core ARM A9 base platform

 Many Sources of SW and HW IP

– Standardized around AMBA-AXI

– Xilinx, ARM libraries

– 3rd Parties

 Industry-Leading Tools

– ARM RVDS Suite & Ecosystem

– Open source GNU tools

– Xilinx ISE® Design Suite

– Xilinx Targeted Design Platforms

Programming

Integrate IP

Test

Release

Debug

Design

Xilinx IP

Partner IP

Custom IP

Integrate IP

Test

Release

Debug

Software 

Architect

Hardware 

Architect

System

Architect

Page 36



Anatomy of a Targeted Design Platform

 Scalable development board 

– Enable migration up or down in same FPGA package

– FMC connectors – extend base board functionality, enable 

ecosystem

– Pre-configured with working Targeted Reference Design

 Targeted Reference Designs 

– Optimized for performance and lower resource utilization 

– Enable system eval., performance measurement and analysis

 Domain optimized design environment

– ISE Design Suite: Embedded Edition

• Hardware design flow and ebedded software development flow

• Advanced connectivity setup and analysis tools

• Support for industry standard AMBA 4 AXI4 interconnect

– Domain-specific tools

 Documentation, source code, HW and SW IP cores 
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AutoESL AutoPilot C to Gates
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 In 2010, BDTI optical flow 

benchmark showed quality of output 

comparable to manual design.

“In our test of Man vs. Machine; 

Machine won hands down! We were 

able to create and verify complex 

matrix inverse in 5 days vs. 3 

months; Algorithm to FPGA speed & 

QoR is unbelievable. If I did not 

verify in hardware I would think the 

tool is lying. “ —MilAero Company



Moore
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 Moore’s Law is still delivering transistor count

– Performance limited by power

– Technology is increasingly difficult to master

 Digital wins

 Custom silicon getting prohibitively expensive 

(“Moore’s Second Law”)

– Custom silicon too expensive for a rising fraction of 

applications

 Programmable wins



More than More than Moore
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Addressing the design gap

Devices

 Tools

Boards

 IP Libraries



Conclusions

void core (

int n,          // input size

float *data_in1, // input stream

float *data_in2, // input stream

float *data_out // output stream

) {

int i, j=0;

for (i=0; i<n; i++)

data_out[i] = data_in1[i] + data_in2[i];

}

Programmable logic vendors are the 

technology leaders

–[M] Shipping 28nm Technology

–[MtM] 3D Technology

–[MtMtM] Design efficiency: devices, IP, SW



Thank You


